Friday, 18 January 2013

excersie 1.2

Question 1:
Show that the function f: R*  R* defined by is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R*?
solutions =
 


It is given that f: R*  R* is defined by
One-one:
f is one-one.
Onto:
It is clear that for y R*, there exists such  that
f is onto.
Thus, the given function (f) is one-one and onto.
Now, consider function g: N  R*defined by
We have,
g is one-one.
Further, it is clear that g is not onto as for 1.2 ∈R* there does not exit any x in N such that g(x) =.
Hence, function g is one-one but not onto.

Question 2:
Check the injectivity and surjectivity of the following functions:
(i) f: N  N given by f(x) = x2
(ii) f: Z  Z given by f(x) = x2
(iii) f: R  R given by f(x) = x2
(iv) f: N  N given by f(x) = x3
(v) f: Z  Z given by f(x) = x3
SOLUTIONS = 
(i) f: N  N is given by,
f(x) = x2
It is seen that for x, y N, f(x) = f(y) ⇒ x2 = y2  x = y.
f is injective.
Now, 2 ∈ N. But, there does not exist any x in N such that f(x) = x2 = 2.
 f is not surjective.
Hence, function f is injective but not surjective.
(ii) f: Z  Z is given by,
f(x) = x2
It is seen that f(−1) = f(1) = 1, but −1 ≠ 1.
 f is not injective.
Now,−2 ∈ Z. But, there does not exist any element x Z such that f(x) = x2 = −2.
 f is not surjective.
Hence, function f is neither injective nor surjective.
(iii) f: R  R is given by,
f(x) = x2
It is seen that f(−1) = f(1) = 1, but −1 ≠ 1.
 f is not injective.
Now,−2 ∈ R. But, there does not exist any element x  R such that f(x) = x2 = −2.
 f is not surjective.
Hence, function f is neither injective nor surjective.
(iv) f: N  N given by,
f(x) = x3
It is seen that for x, y N, f(x) = f(y) ⇒ x3 = y3  x = y.
f is injective.
Now, 2 ∈ N. But, there does not exist any element x in domain N such that f(x) = x3 = 2.
 f is not surjective
Hence, function f is injective but not surjective.
(v) f: Z  Z is given by,
f(x) = x3
It is seen that for x, y  Z, f(x) = f(y) ⇒ x3 = y3  x = y.
 f is injective.
Now, 2 ∈ Z. But, there does not exist any element x in domain Z such that f(x) = x3 = 2.
 f is not surjective.
Hence, function f is injective but not surjective.
Question 3:
Prove that the Greatest Integer Function f: R  R given by f(x) = [x], is neither one-once nor onto, where [x] denotes the greatest integer less than or equal to x.
SOLUTIONS =
 
f: R  R is given by,
f(x) = [x]
It is seen that f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1.
 f(1.2) = f(1.9), but 1.2 ≠ 1.9.
 f is not one-one.
Now, consider 0.7 ∈ R.
It is known that f(x) = [x] is always an integer. Thus, there does not exist any element x  R such that f(x) = 0.7.
 f is not onto.
Hence, the greatest integer function is neither one-one nor onto.

Question 4:
Show that the Modulus Function f: R  R given by, is neither one-one nor onto, where is x, if x is positive or 0 and is − x, if x is negative.
SOLUTIONS =

 
f: R  R is given by,
It is seen that.
f(−1) = f(1), but −1 ≠ 1.
 f is not one-one.
Now, consider −1 ∈ R.
It is known that f(x) =  is always non-negative. Thus, there does not exist any element x in domain R such that f(x) =  = −1.
 f is not onto.
Hence, the modulus function is neither one-one nor onto.
 
Question 5:
Show that the Signum Function f: R  R, given by
is neither one-one nor onto.
SOLUTIONS =
 
f: R  R is given by,
It is seen that f(1) = f(2) = 1, but 1 ≠ 2.
f is not one-one.
Now, as f(x) takes only 3 values (1, 0, or −1) for the element −2 in co-domain R, there does not exist any x in domain R such that f(x) = −2.
 f is not onto.
Hence, the signum function is neither one-one nor onto.

Question 6:
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
SOLUTIONS =
 
It is given that A = {1, 2, 3}, B = {4, 5, 6, 7}.
f: A  B is defined as f = {(1, 4), (2, 5), (3, 6)}.
 f (1) = 4, f (2) = 5, f (3) = 6
It is seen that the images of distinct elements of A under f are distinct.
Hence, function f is one-one.

Question 7:
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f: R  R defined by f(x) = 3 − 4x
(ii) f: R  R defined by f(x) = 1 + x2
SOLUTIONS =
 
(i) f: R  R is defined as f(x) = 3 − 4x.
.
 f is one-one.
For any real number (y) in R, there exists i n R such that
f is onto.
Hence, f is bijective.
(ii) f: R  R is defined as
.
.
does not imply that
For instance,
 f is not one-one.
Consider an element −2 in co-domain R.
It is seen that is  positive for all x  R.
Thus, there does not exist any x in domain R such that f(x) = −2.
 f is not onto.
Hence, f is neither one-one nor onto.
 
Question 8:
Let A and B be sets. Show that f: A × B  B × A such that (a, b) = (b, a) is bijective function.
SOLUTIONS =
 
f: A × B  B × A is defined as f(a, b) = (b, a).
.
 f is one-one.
Now, let (b, a) ∈ B × A be any element.
Then, there exists (a, b) ∈A × B such that f(a, b) = (b, a). [By definition of f]
 f is onto.
Hence, f is bijective.
 
Question 9:
Let f: N  N be defined by
State whether the function f is bijective. Justify your answer.
SOLUTIONS=
 
f: N  N is defined as
It can be observed that:
 f is not one-one.
Consider a natural number (n) in co-domain N.
Case I: n is odd
n = 2r + 1 for some r  N. Then, there exists 4r + 1∈N such that
.
Case II: n is even
n = 2r for some r  N. Then,there exists 4r N such that.
 f is onto.
Hence, f is not a bijective function.
 
Question 10:
Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by
. Is f one-one and onto? Justify your answer.
SOLUTIONS=
 
A = R − {3}, B = R − {1}
f: A → B is defined as.
.
 f is one-one.
Let y ∈B = R − {1}. Then, y ≠ 1.
The function f is onto if there exists x ∈A such that f(x) = y.
Now,
Thus,
Hence, function f is one-one and onto.
 
Question 11:
Let f: R  R be defined as f(x) = x4. Choose the correct answer.
(A) f is one-one onto (B) f is many-one onto
(C) f is one-one but not onto (D) f is neither one-one nor onto
SOLUTIONS=
 
f: R  R is defined as
Let x, y  R such that f(x) = f(y).
does not imply that.
For instance,
 f is not one-one.
Consider an element 2 in co-domain R. It is clear that there does not exist any x in domain R such that f(x) = 2.
 f is not onto.
Hence, function f is neither one-one nor onto.
The correct answer is D.
 
Question 12:
Let f: R  R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto (B) f is many-one onto
(C) f is one-one but not onto (D) f is neither one-one nor onto
SOLUTIONS=
 
f: R  R is defined as f(x) = 3x.
Let x, y  R such that f(x) = f(y).
⇒ 3x = 3y
 x = y
f is one-one.
Also, for any real number (y) in co-domain R, there exists  in R such that.
f is onto.
Hence, function f is one-one and onto.
The correct answer is A.

No comments:

Post a Comment