Friday 18 January 2013

excersie 1.3 continued

Question 6:
Show that f: [−1, 1] → R, given by is one-one. Find the inverse of the function f: [−1, 1] → Range f.
(Hint: For y ∈Range f, y =, for some x in [−1, 1], i.e.,)
solutions =

 

f: [−1, 1] → R is given as
Let f(x) = f(y).
 f is a one-one function.
It is clear that f: [−1, 1] → Range f is onto.
 f: [−1, 1] → Range f is one-one and onto and therefore, the inverse of the function:
f: [−1, 1] → Range f exists.
Let g: Range f → [−1, 1] be the inverse of f.
Let y be an arbitrary element of range f.
Since f: [−1, 1] → Range f is onto, we have:
Now, let us define g: Range f → [−1, 1] as
gof = and fog = 
f−1 = g
 
 
Question 7:
Consider f: R  R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
solutions=
 
f: R  R is given by,
f(x) = 4x + 3
One-one:
Let f(x) = f(y).
 f is a one-one function.
Onto:
For y  R, let y = 4x + 3.
Therefore, for any y  R, there exists  such that
 f is onto.
Thus, f is one-one and onto and therefore, f−1 exists.
Let us define g: R R by.
Hence, f is invertible and the inverse of f is given by
 
Question 8:
Consider f: R+ → [4, ) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by, where R+ is the set of all non-negative real numbers.
solutions=
 
f: R+ → [4, ∞) is given as f(x) = x2 + 4.
One-one:
Let f(x) = f(y).
 f is a one-one function.
Onto:
For y ∈ [4, ∞), let y = x2 + 4.
Therefore, for any y  R, there exists  such that
.
 f is onto.
Thus, f is one-one and onto and therefore, f−1 exists.
Let us define g: [4, ∞) → R+ by,
Hence, f is invertible and the inverse of f is given by
 
Question 9:
Consider f: R+ → [−5, ) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with.
solutions=
 
f: R+ → [−5, ∞) is given as f(x) = 9x2 + 6x − 5.
Let y be an arbitrary element of [−5, ∞).
Let y = 9x2 + 6x − 5.
f is onto, thereby range f = [−5, ∞).
Let us define g: [−5, ∞) → R+ as
We now have:
and
Hence, f is invertible and the inverse of f is given by
 
Question 10:
Let f: X  Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y  Y,
fog1(y) = IY(y) = fog2(y). Use one-one ness of f).
solutions=
 
Let f: X  Y be an invertible function.
Also, suppose f has two inverses (say).
Then, for all y Y, we have:
Hence, f has a unique inverse.
 
Question 11:
Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.
solutions=
 
Function f: {1, 2, 3} → {a, b, c} is given by,
f(1) = a, f(2) = b, and f(3) = c
If we define g: {a, b, c} → {1, 2, 3} as g(a) = 1, g(b) = 2, g(c) = 3, then we have:
and, where X = {1, 2, 3} and Y= {a, b, c}.
Thus, the inverse of f exists and f−1 = g.
f−1: {a, b, c} → {1, 2, 3} is given by,
f−1(a) = 1, f−1(b) = 2, f-1(c) = 3
Let us now find the inverse of f−1 i.e., find the inverse of g.
If we define h: {1, 2, 3} → {a, b, c} as
h(1) = a, h(2) = b, h(3) = c, then we have:
, where X = {1, 2, 3} and Y = {a, b, c}.
Thus, the inverse of g exists and g−1 = h ⇒ (f−1)−1 = h.
It can be noted that h = f.
Hence, (f−1)−1 = f.
 
Question 12:
Let f: X  Y be an invertible function. Show that the inverse of f−1 is f, i.e.,
(f−1)−1 = f.
solutions=
 
Let f: X  Y be an invertible function.
Then, there exists a function g: Y  X such that gof = IXand fog = IY.
Here, f−1 = g.
Now, gof = IXand fog = IY
 f−1of = IXand fof−1= IY
Hence, f−1: Y  X is invertible and f is the inverse of f−1
i.e., (f−1)−1 = f.
 
Question 13:
If f: R  R be given by, then fof(x) is
(A) (B) x3 (C) x (D) (3 − x3)
solutions=
 
f: R  R is given as.
The correct answer is C.
Question 14:
Let be a function defined as. The inverse of f is map g: Range
(A) (B)
(C) (D)                                                                                                     solutions =     
It is given that
Let y be an arbitrary element of Range f.
Then, there exists x such that 
Let us define g: Rangeas
Now,
Thus, g is the inverse of f i.e., f−1 = g.
Hence, the inverse of f is the map g: Range, which is given by
The correct answer is B.
 

No comments:

Post a Comment